Understanding Damage Mechanisms In Ferritic/Martensitic Steels

Robert W. Swindeman and Philip J. Maziasz
Oak Ridge National Laboratory

Michael J. Swindeman Stress Engineering Services

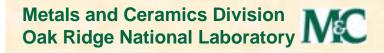
17th Annual Conference on Fossil Energy Materials

Baltimore, Maryland April 22–24, 2003

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

There Are Several Reasons For Concern About Damage Mechanisms In Advanced Ferritic Steels

- They will be used extensively in fossil energy
- Their strength has a higher temperature dependence than "conventional" steels
- Their microstructures are relatively unstable
- Their long-time data bases are meager
- They are used for thick-section components where high integrity is required


This Talk Will Focus on 9Cr-1Mo-V Steel As Representative of the Advanced 9-2%Cr Steels

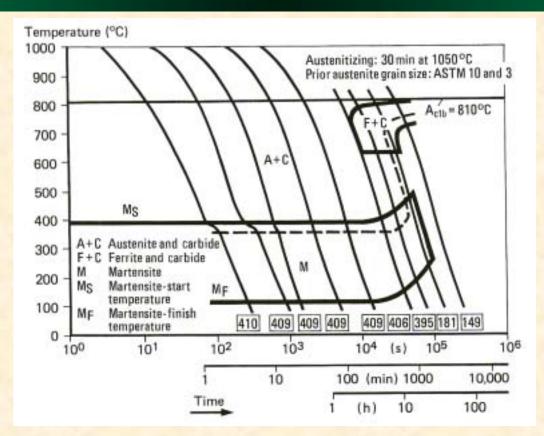
- A summary of microstructural and property changes will be presented
- A summary of some emerging damage accumulation models will be provided

Chemistry (Wt %)

Element	std Gr 9	Gr 91
С	0.15 max	0.08 - 0.12
Mn	0.30 - 0.60	0.30 - 0.60
Р	0.30 max	0.020 max
S	0.030 max	0.010 max
Si	0.25 - 1.00	0.20 - 0.50
Cr	8.00 - 10.00	8.00 - 9.50
Мо	0.90 - 1.10	0.85 - 1.05

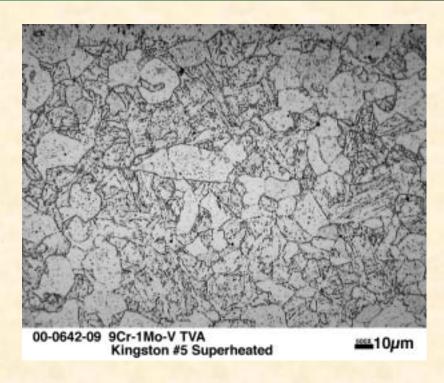
Plus Ni, V, Nb, N, and Al contents are specified for Gr 91

Gr 91 Chemistry Modifications


Element

Content (wt %)

Ni	0.40 max
V	0.18 - 0.25
Nb	0.06 - 0.10
N	0.030 - 0.070
Al	0.04 max

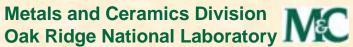

The Chromium-Nickel Balance is adjusted to produce only Martensite

Heat Treatment (CCT)

When cooled from 1040°C faster than 6 °C/minute Gr 91 has an Martensite start near 400°C and a finish above 100°C

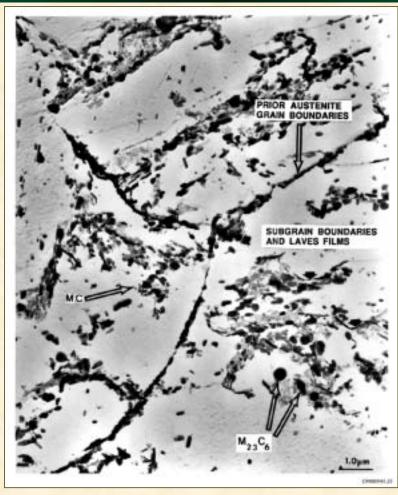
The Tempered Microstructure Changes During Long-Term Service Of 9Cr-1MoVNb at 550-590°C

Super heater tubing after 143,000 h

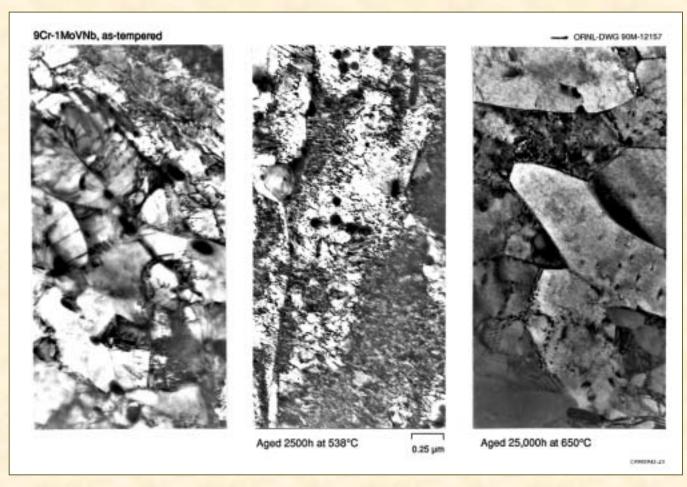


Unexposed, as-tempered

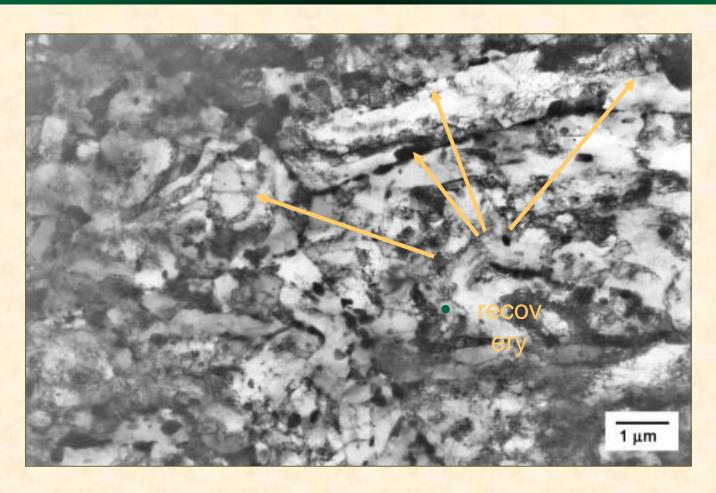
Long-Term Aging of 9Cr-1MoVNb Steel At 482°C Produces Some Recovery And Recrystallization Near Heavily Precipitated Boundaries



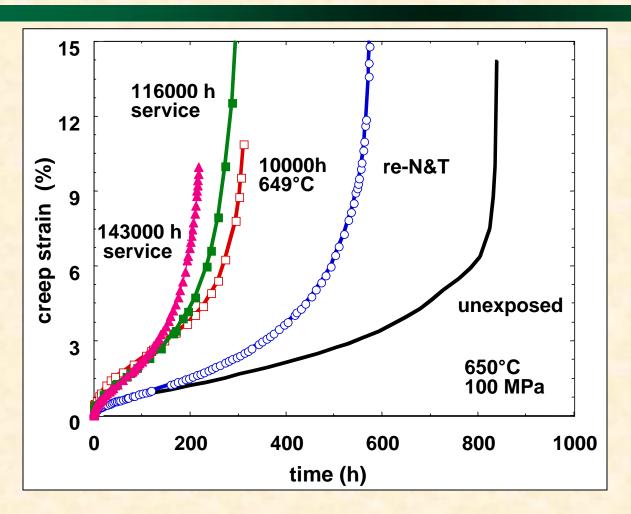
9Cr-1MoVNb (heat 30176) aged 75,000h at 482°C

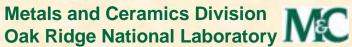

Long-Term Aging of 9Cr-1MoVNb Steel At 482°C Produces Significant Laves Phase Precipitation Along Boundaries And In-Between Carbides

9Cr-1MoVNb (heat 30176) aged 75,000h At 482°C



Microstructural Changes During Aging At 538°C Cause Transient Hardening, But At 650°C Cause Softening Relative To As-Tempered 9Cr-1MoVNb Steel




Exposure of 9Cr-1MoVNb Tubing For 143,000 h At 550-590°C Produces Laves Phase Precipitation And Substructure Recovery

Creep Testing Revealed A Higher Creep Rate And Shorter Rupture Life After Service

Results were consistent with expectations based on aging studies.

In Summary, Aging and Service Exposures Produced Many Changes

- Coarsening of substructure
- Precipitation of intermetallic phases
- Loss of yield and ultimate strengths
- Loss of creep resistance
- Loss of toughness

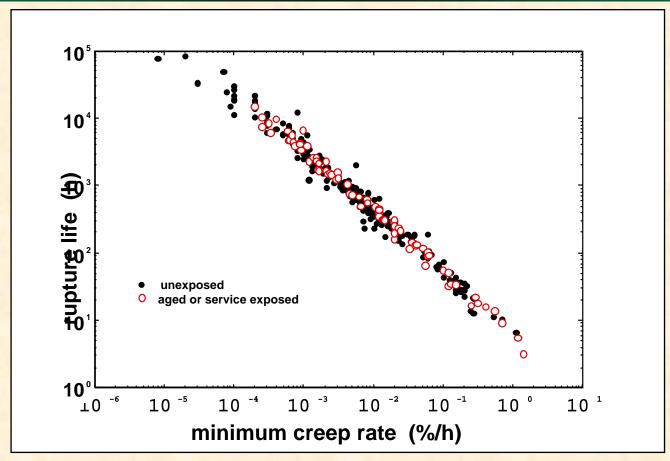
Some of these effects are incorporated into damage models

Four Damage Accumulation Models Are Being Evaluated

- Life Fraction
- Monkman-Grant
- API 579 Omega Method
- Dyson Continuum Damage Mechanics (CDM)

The Life Fraction (Robinson's) Rule Is A Simple And Useful Damage Accumulation Model

$$\sum \frac{t_i}{t_{Ri}} = 1$$


One only needs to estimate t_{Ri} for each stress-temperature

The Monkman-Grant Requires Knowledge of The Minimum Creep Rate (MCR) For The Damaged State

$$t_{Ri} = A mcr^n$$

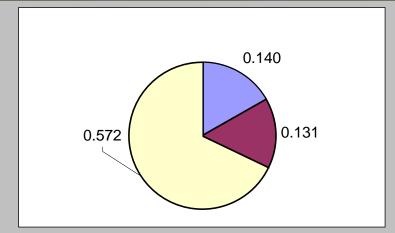
 Assuming that A and n are constants and independent of history and damage

Data for the Three Conditions Were Compared on the Basis of the Monkman-Grant Correlation

All followed a similar trend

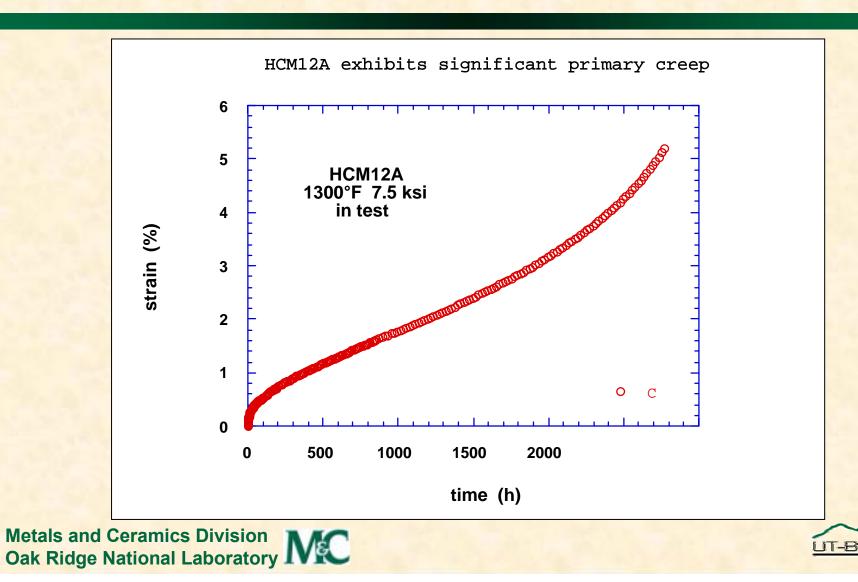
The API 579 Omega Method Assumes That The Damage Parameter, Ω_{p} is Reflected in The Tertiary Creep Curve

In
$$\dot{\varepsilon} = \ln \dot{\varepsilon}_o + \Omega_p \varepsilon$$

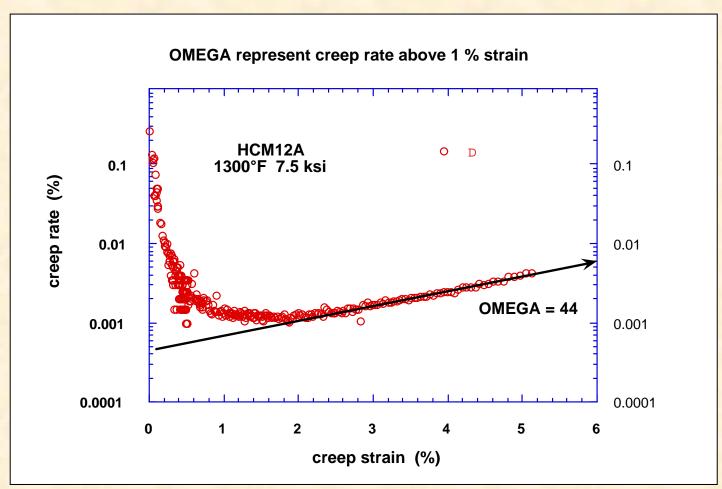

 The parameter includes all damage components (area change, strain, and aging)

The Omega Method Is Being Exercised for 9Cr-1Mo-V Steel

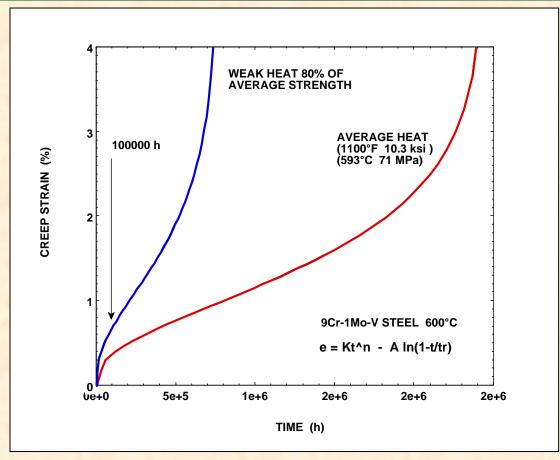
Material	9Cr-1Mo-V
	Pressurized
State of Stress	Cylinder or Cone


Material Parameter	Omega Parameter	Strain Rate Parameter
C _o	-2	-34
C₁	7200	73201.8
C_{2}	-1500	-2709
C ₃	0	-4673
C ₄	0	-569

State-of-stress Factor	α	2
Prager Factor	β	0.33



	Temperature	Primary Stress	Time	Creep Ductility Adjustment Factor	Scatter Band Adjustment Factor	Fraction of Life
Stage	<i>T</i> (F)	$\sigma_1(ksi)$	t_i (hrs)	$\Delta_{\!cd}$	$\Delta_{\!\scriptscriptstyle SP}$	D_{i}
1	1050	14.5	116,000	0	0	0.140
2	1067	14.5	40,000	0	0	0.131
3	1112	14.5	14,000	0	0	0.572
Remaining Life						0.157


The Advance 12Cr-W-V Steels Exhibit Creep Curves Similar To 9Cr-1M-V Steel

The Omega Parameter is Valid Once Primary Creep Is Exhausted

For Most Service Conditions To Be Encountered In The Next 10 Years, Gr 91 Will Be In The Primary Creep Stage

Damage assessment that identifies the creep stage would be helpful

The Dyson CDM Model Takes A Materials Science Approach

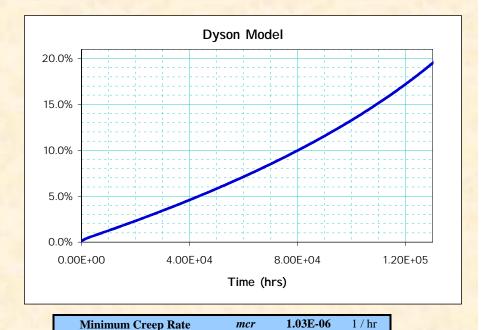
- Strain-induced damage includes deformation and cavitation
- Thermally-induced damage includes aging effects
- Environment damage includes surface corrosion and internal oxidation

The Parametric Parameters For the Dyson CDM Model Are Under Development

Test Conditions

Initial Stress	σ	150	MPa
Analysis Time	t	131400	hrs
Output / Maximum Time Increment	dt	131.4	hrs
Temperature	T	1123	K
Load Condition	\boldsymbol{L}	Constant Load (CL)	

Basic Parameters for the Dyson Model (eqs. 8)


Stress parameter (function of temperature)	σ_{0}	21.30875118	MPa
Strain rate Paramater (function of Temeperature)	$\boldsymbol{\mathcal{E}}_{0}$	7.9867E-12	1 / sec
Proportionality Constant for Primary Creep	h '	4.00E+04	MPa
Maximum allowable value for H	H^*	0.4	
Material Constant for Mobile Dislocations	C	0	
Rate Constant for Particle Coarsening	K_{p}	0	1 / sec
Cavitation Constant (0 - 1/3)	K_n	0	
Failure Strain	$\boldsymbol{\mathcal{E}}_{fu}$	0.2	

Parameters for Calculating ε_0 , σ_0

Universal Gas Constant	R	0.008314	kJ / mol-K
Parameter	$oldsymbol{arepsilon}$ ' $_{0}$	2400	1 / sec
Activation energy for diffusion and jog formation	$Q_{d/j}$	311.25	kJ / mol
Parameter	$\sigma_{_{0,m}}$	33	MPa
Enthalpy of Solution	ΔH	49.8357788	kJ / mol
Solvus Temperature	T_{s}	1394	K

Parameters for Calculating K ,

Particle Coarsening, coefficient	K'_{p}	0.00E+00	1 / sec
Particle Coarsening, activation energy	Q_{p}	300	kJ / mol

Efforts Are Being Made to Obtain Data Needed To Exercise The Dyson Model

- Precipitation modeling is underway at Loughborough University
- Quantitative metallographic data will be collected in collaboration with the Australian Nuclear Science and Technology Organization

Summary

- An understanding of damage mechanisms in advanced ferritic/martensitic steels is a key to their success in future fossil applications
- Good progress has been made in developing and exercising damage accumulation models